Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Quantification of mRNA stability of stress-responsive yeast genes following conditional excision of open reading frames.

Identifieur interne : 001000 ( Main/Exploration ); précédent : 000F99; suivant : 001001

Quantification of mRNA stability of stress-responsive yeast genes following conditional excision of open reading frames.

Auteurs : Nicolas Talarek [Suisse] ; Séverine Bontron ; Claudio De Virgilio

Source :

RBID : pubmed:23792549

Descripteurs français

English descriptors

Abstract

Eukaryotic cells rapidly adjust the levels of mRNAs in response to environmental stress primarily by controlling transcription and mRNA turnover. How different stress conditions influence the fate of stress-responsive mRNAs, however, is relatively poorly understood. This is largely due to the fact that mRNA half-life assays are traditionally based on interventions (e.g., temperature-shifts using temperature-sensitive RNA polymerase II alleles or treatment with general transcription inhibitory drugs), which, rather than blocking, specifically induce transcription of stress-responsive genes. To study the half-lives of the latter suite of mRNAs, we developed and describe here a minimally perturbing alternative method, coined CEO, which is based on discontinuance of transcription following the conditional excision of open reading frames. Using CEO, we confirm that the target of rapamycin complex I (TORC1), a nutrient-activated, central stimulator of eukaryotic cell growth, favors the decay of mRNAs that depend on the stress- and/or nutrient-regulated transcription factors Msn2/4 and Gis1 for their transcription. We further demonstrate that TORC1 controls the stability of these mRNAs via the Rim15-Igo1/2-PP2A(Cdc55) effector branch, which reportedly also controls Gis1 promoter recruitment. These data pinpoint PP2A(Cdc55) as a central node in homo-directional coordination of transcription and post-transcriptional mRNA stabilization of a specific array of nutrient-regulated genes.

DOI: 10.4161/rna.25355
PubMed: 23792549
PubMed Central: PMC3817151


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Quantification of mRNA stability of stress-responsive yeast genes following conditional excision of open reading frames.</title>
<author>
<name sortKey="Talarek, Nicolas" sort="Talarek, Nicolas" uniqKey="Talarek N" first="Nicolas" last="Talarek">Nicolas Talarek</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Division of Biochemistry; University of Fribourg; CH-1700 Fribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, Division of Biochemistry; University of Fribourg; CH-1700 Fribourg</wicri:regionArea>
<wicri:noRegion>Division of Biochemistry; University of Fribourg; CH-1700 Fribourg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bontron, Severine" sort="Bontron, Severine" uniqKey="Bontron S" first="Séverine" last="Bontron">Séverine Bontron</name>
</author>
<author>
<name sortKey="De Virgilio, Claudio" sort="De Virgilio, Claudio" uniqKey="De Virgilio C" first="Claudio" last="De Virgilio">Claudio De Virgilio</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23792549</idno>
<idno type="pmid">23792549</idno>
<idno type="doi">10.4161/rna.25355</idno>
<idno type="pmc">PMC3817151</idno>
<idno type="wicri:Area/Main/Corpus">001001</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001001</idno>
<idno type="wicri:Area/Main/Curation">001001</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001001</idno>
<idno type="wicri:Area/Main/Exploration">001001</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Quantification of mRNA stability of stress-responsive yeast genes following conditional excision of open reading frames.</title>
<author>
<name sortKey="Talarek, Nicolas" sort="Talarek, Nicolas" uniqKey="Talarek N" first="Nicolas" last="Talarek">Nicolas Talarek</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Division of Biochemistry; University of Fribourg; CH-1700 Fribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, Division of Biochemistry; University of Fribourg; CH-1700 Fribourg</wicri:regionArea>
<wicri:noRegion>Division of Biochemistry; University of Fribourg; CH-1700 Fribourg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bontron, Severine" sort="Bontron, Severine" uniqKey="Bontron S" first="Séverine" last="Bontron">Séverine Bontron</name>
</author>
<author>
<name sortKey="De Virgilio, Claudio" sort="De Virgilio, Claudio" uniqKey="De Virgilio C" first="Claudio" last="De Virgilio">Claudio De Virgilio</name>
</author>
</analytic>
<series>
<title level="j">RNA biology</title>
<idno type="eISSN">1555-8584</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Cycle Proteins (genetics)</term>
<term>Cell Cycle Proteins (metabolism)</term>
<term>DNA-Binding Proteins (genetics)</term>
<term>DNA-Binding Proteins (metabolism)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Half-Life (MeSH)</term>
<term>Histone Demethylases (genetics)</term>
<term>Histone Demethylases (metabolism)</term>
<term>Open Reading Frames (MeSH)</term>
<term>RNA Stability (MeSH)</term>
<term>RNA, Fungal (genetics)</term>
<term>RNA, Fungal (metabolism)</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Real-Time Polymerase Chain Reaction (MeSH)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Stress, Physiological (MeSH)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
<term>Transcription, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN fongique (génétique)</term>
<term>ARN fongique (métabolisme)</term>
<term>ARN messager (génétique)</term>
<term>ARN messager (métabolisme)</term>
<term>Cadres ouverts de lecture (MeSH)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Histone Demethylases (génétique)</term>
<term>Histone Demethylases (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines de liaison à l'ADN (génétique)</term>
<term>Protéines de liaison à l'ADN (métabolisme)</term>
<term>Protéines du cycle cellulaire (génétique)</term>
<term>Protéines du cycle cellulaire (métabolisme)</term>
<term>Période (MeSH)</term>
<term>Réaction de polymérisation en chaine en temps réel (MeSH)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Stabilité de l'ARN (MeSH)</term>
<term>Stress physiologique (MeSH)</term>
<term>Transcription génétique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cell Cycle Proteins</term>
<term>DNA-Binding Proteins</term>
<term>Histone Demethylases</term>
<term>RNA, Fungal</term>
<term>RNA, Messenger</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cell Cycle Proteins</term>
<term>DNA-Binding Proteins</term>
<term>Histone Demethylases</term>
<term>RNA, Fungal</term>
<term>RNA, Messenger</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN fongique</term>
<term>ARN messager</term>
<term>Facteurs de transcription</term>
<term>Histone Demethylases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de liaison à l'ADN</term>
<term>Protéines du cycle cellulaire</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN fongique</term>
<term>ARN messager</term>
<term>Facteurs de transcription</term>
<term>Histone Demethylases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de liaison à l'ADN</term>
<term>Protéines du cycle cellulaire</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
<term>Half-Life</term>
<term>Open Reading Frames</term>
<term>RNA Stability</term>
<term>Real-Time Polymerase Chain Reaction</term>
<term>Stress, Physiological</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cadres ouverts de lecture</term>
<term>Période</term>
<term>Réaction de polymérisation en chaine en temps réel</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Stabilité de l'ARN</term>
<term>Stress physiologique</term>
<term>Transcription génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Eukaryotic cells rapidly adjust the levels of mRNAs in response to environmental stress primarily by controlling transcription and mRNA turnover. How different stress conditions influence the fate of stress-responsive mRNAs, however, is relatively poorly understood. This is largely due to the fact that mRNA half-life assays are traditionally based on interventions (e.g., temperature-shifts using temperature-sensitive RNA polymerase II alleles or treatment with general transcription inhibitory drugs), which, rather than blocking, specifically induce transcription of stress-responsive genes. To study the half-lives of the latter suite of mRNAs, we developed and describe here a minimally perturbing alternative method, coined CEO, which is based on discontinuance of transcription following the conditional excision of open reading frames. Using CEO, we confirm that the target of rapamycin complex I (TORC1), a nutrient-activated, central stimulator of eukaryotic cell growth, favors the decay of mRNAs that depend on the stress- and/or nutrient-regulated transcription factors Msn2/4 and Gis1 for their transcription. We further demonstrate that TORC1 controls the stability of these mRNAs via the Rim15-Igo1/2-PP2A(Cdc55) effector branch, which reportedly also controls Gis1 promoter recruitment. These data pinpoint PP2A(Cdc55) as a central node in homo-directional coordination of transcription and post-transcriptional mRNA stabilization of a specific array of nutrient-regulated genes. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23792549</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>04</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1555-8584</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2013</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>RNA biology</Title>
<ISOAbbreviation>RNA Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Quantification of mRNA stability of stress-responsive yeast genes following conditional excision of open reading frames.</ArticleTitle>
<Pagination>
<MedlinePgn>1299-308</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.4161/rna.25355</ELocationID>
<Abstract>
<AbstractText>Eukaryotic cells rapidly adjust the levels of mRNAs in response to environmental stress primarily by controlling transcription and mRNA turnover. How different stress conditions influence the fate of stress-responsive mRNAs, however, is relatively poorly understood. This is largely due to the fact that mRNA half-life assays are traditionally based on interventions (e.g., temperature-shifts using temperature-sensitive RNA polymerase II alleles or treatment with general transcription inhibitory drugs), which, rather than blocking, specifically induce transcription of stress-responsive genes. To study the half-lives of the latter suite of mRNAs, we developed and describe here a minimally perturbing alternative method, coined CEO, which is based on discontinuance of transcription following the conditional excision of open reading frames. Using CEO, we confirm that the target of rapamycin complex I (TORC1), a nutrient-activated, central stimulator of eukaryotic cell growth, favors the decay of mRNAs that depend on the stress- and/or nutrient-regulated transcription factors Msn2/4 and Gis1 for their transcription. We further demonstrate that TORC1 controls the stability of these mRNAs via the Rim15-Igo1/2-PP2A(Cdc55) effector branch, which reportedly also controls Gis1 promoter recruitment. These data pinpoint PP2A(Cdc55) as a central node in homo-directional coordination of transcription and post-transcriptional mRNA stabilization of a specific array of nutrient-regulated genes. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Talarek</LastName>
<ForeName>Nicolas</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Division of Biochemistry; University of Fribourg; CH-1700 Fribourg, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bontron</LastName>
<ForeName>Séverine</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>De Virgilio</LastName>
<ForeName>Claudio</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>06</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>RNA Biol</MedlineTA>
<NlmUniqueID>101235328</NlmUniqueID>
<ISSNLinking>1547-6286</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018797">Cell Cycle Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004268">DNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C549818">Igo1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C081935">MSN2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C081937">MSN4 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012331">RNA, Fungal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C561842">TORC1 protein complex, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.14.11.-</RegistryNumber>
<NameOfSubstance UI="C400297">GIS1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.14.11.-</RegistryNumber>
<NameOfSubstance UI="D056466">Histone Demethylases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018797" MajorTopicYN="N">Cell Cycle Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004268" MajorTopicYN="N">DNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006207" MajorTopicYN="N">Half-Life</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056466" MajorTopicYN="N">Histone Demethylases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016366" MajorTopicYN="Y">Open Reading Frames</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020871" MajorTopicYN="Y">RNA Stability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012331" MajorTopicYN="N">RNA, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060888" MajorTopicYN="N">Real-Time Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="Y">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Cre recombinase</Keyword>
<Keyword MajorTopicYN="N">endosulfine</Keyword>
<Keyword MajorTopicYN="N">mRNA half-life</Keyword>
<Keyword MajorTopicYN="N">stress-responsive genes</Keyword>
<Keyword MajorTopicYN="N">target of rapamycin complex I (TORC1)</Keyword>
<Keyword MajorTopicYN="N">type 2 protein phosphatase (PP2A)</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>6</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>6</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>4</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23792549</ArticleId>
<ArticleId IdType="pii">25355</ArticleId>
<ArticleId IdType="doi">10.4161/rna.25355</ArticleId>
<ArticleId IdType="pmc">PMC3817151</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genome Biol. 2005;6(10):R86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16207357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Aug;19(8):5393-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10409730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2006 Mar;6(2):160-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16487339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Jun 8;26(5):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2000 Dec 15;28(24):E108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11121495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2001 Nov;12(11):3428-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11694578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):5860-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11972065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Dec;12(6):1607-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14690612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2004 Apr;3(4):462-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15300954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1987 May;7(5):1602-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3299050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1988 Aug 25;16(16):7917-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3047675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1991;194:169-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2005785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1991 Dec;173(23):7429-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1938939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1994 Dec;10(13):1793-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7747518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2007 Jul;13(7):982-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2008 Feb;25(2):85-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17914747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2008 Jul;14(7):1328-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18469165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2008 Jul;69(1):277-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18513215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2008;448:267-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19111181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009;10:391</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19698117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2009 Oct;183(2):413-22, 1SI-13SI</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19652178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2010 May 14;38(3):345-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20471941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2011 Jan 4;7:458</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21206491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Mar;39(4):1501-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20959291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA Biol. 2011 Jan-Feb;8(1):14-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21289492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2011 Aug 1;22(15):2787-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21680716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Dec 23;147(7):1473-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22196725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Dec 23;147(7):1484-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22196726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Mar 2;148(5):958-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22385961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2012 Jul;22(7):1350-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22466169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2013 Jan 31;3(1):16-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23273919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2013 Oct 23;425(20):3750-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23467123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1998 Nov 25;95(5):717-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9845373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2005 Dec 21;24(24):4271-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16308562</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suisse</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bontron, Severine" sort="Bontron, Severine" uniqKey="Bontron S" first="Séverine" last="Bontron">Séverine Bontron</name>
<name sortKey="De Virgilio, Claudio" sort="De Virgilio, Claudio" uniqKey="De Virgilio C" first="Claudio" last="De Virgilio">Claudio De Virgilio</name>
</noCountry>
<country name="Suisse">
<noRegion>
<name sortKey="Talarek, Nicolas" sort="Talarek, Nicolas" uniqKey="Talarek N" first="Nicolas" last="Talarek">Nicolas Talarek</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001000 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001000 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23792549
   |texte=   Quantification of mRNA stability of stress-responsive yeast genes following conditional excision of open reading frames.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23792549" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020